SMOTE for Learning from Imbalanced Data: Progress and Challenges. Marking the 15-year Anniversary∗

نویسندگان

  • Alberto Fernández
  • Francisco Herrera
  • Nitesh V. Chawla
چکیده

The Synthetic Minority Oversampling Technique (SMOTE) preprocessing algorithm has been established as a “de facto” standard in the framework of learning from imbalanced data. This is due to its simplicity in the design of the procedure, as well as its robustness when applied to different type of problems. Since its publication in 2002, it has proven successful in a number of different applications. SMOTE has also inspired several approaches to counter the issue of class imbalance, and has also made its way to new classification paradigms, including multilabel classification, incremental learning, semi-supervised learning, multi-instance learning, among others. It is standard benchmark for learning from imbalanced data. It is also featured in a number of different software packages — from open source to commercial. In this paper, marking the fifteen year anniversary of SMOTE, we discuss the current state of affairs with SMOTE, its application, and also identify the next set of challenges to extend SMOTE for Big Data problems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhancing Learning from Imbalanced Classes via Data Preprocessing: A Data-Driven Application in Metabolomics Data Mining

This paper presents a data mining application in metabolomics. It aims at building an enhanced machine learning classifier that can be used for diagnosing cachexia syndrome and identifying its involved biomarkers. To achieve this goal, a data-driven analysis is carried out using a public dataset consisting of 1H-NMR metabolite profile. This dataset suffers from the problem of imbalanced classes...

متن کامل

Borderline-SMOTE: A New Over-Sampling Method in Imbalanced Data Sets Learning

In recent years, mining with imbalanced data sets receives more and more attentions in both theoretical and practical aspects. This paper introduces the importance of imbalanced data sets and their broad application domains in data mining, and then summarizes the evaluation metrics and the existing methods to evaluate and solve the imbalance problem. Synthetic minority oversampling technique (S...

متن کامل

Geometric SMOTE: Effective oversampling for imbalanced learning through a geometric extension of SMOTE

Classification of imbalanced datasets is a challenging task for standard algorithms. Although many methods exist to address this problem in different ways, generating artificial data for the minority class is a more general approach compared to algorithmic modifications. SMOTE algorithm and its variations generate synthetic samples along a line segment that joins minority class instances. In th...

متن کامل

An Analysis of Classification of Imbalanced Datasets by Using Synthetic Minority Over-Sampling Technique

Abstract—Analysing unbalanced datasets is one of the challenges that practitioners in machine learning field face. However, many researches have been carried out to determine the effectiveness of the use of the synthetic minority over-sampling technique (SMOTE) to address this issue. The aim of this study was therefore to compare the effectiveness of the SMOTE over different models on unbalance...

متن کامل

Oversampling for Imbalanced Learning Based on K-Means and SMOTE

Learning from class-imbalanced data continues to be a common and challenging problem in supervised learning as standard classification algorithms are designed to handle balanced class distributions. While different strategies exist to tackle this problem, methods which generate artificial data to achieve a balanced class distribution are more versatile than modifications to the classification a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018